Tropical Fish Keeping banner

Water Hardness and pH in the Freshwater Aquarium

160K views 17 replies 14 participants last post by  Jaybird1 
#1 · (Edited)
Water in its pure form does not exist in nature; it is a powerful solvent, meaning a substance that easily dissolves other substances to create a solution. As rain falls, it picks up many gasses and particulate matter, and it continues to do this as it passes through the ground. Natural water values therefore vary with respect to hardness and pH because the water acquires specific properties from the landscape. Water flowing over or through rock will assimilate minerals from the rock, becoming what we term “hard” water. Water flowing through soils that contain organic matter will be “soft” because the organics bind with and thus remove minerals while creating acids that enter the water. The pH is largely the result of the hardness as well as the amount of carbon dioxide dissolved in the water.

As each freshwater fish species has evolved over thousands of years, their physiology has adjusted to the water values that occur in their respective habitat. We refer to these values as water parameters, and they include hardness, pH and temperature; each of these has an impact on fish. As an ecological example of this, it is hypothesized that the distinct Corydoras species that are endemic to specific tributary streams of the Rio ***** in Amazonia but are not found in the main river or in adjoining tributary streams is likely due to differing parameters including pH and temperature that act as a barrier to the fish. [1] While many fish species appear to be somewhat adaptable, their physiology can be negatively affected if the parameters are outside the fish’s natural preference. Providing suitable water parameters in the aquarium is therefore an important aspect of providing an environment that is less stressful—and this directly relates to healthier fish.

Total Dissolved Solids [TDS] is the measure of all inorganic and organic substances in suspecnded form in the water. This includes the minerals salts. "Salts" here refers not to our common salt (sodium) but to various mineral salts, the most prevalent of which are chlorides, bicarbonates, carbonates, and sulphates of calcium, sodium, magnesium and potassium. Fish are directly impacted by TDS. In fact, when we speak of soft water fish, we are actually referring to the very low, sometimes near zero, level of TDS in their water.

Water hardness is the measure of dissolved mineral salts in the water, a portion of the TDS. There are two basic types of hardness of importance to aquarists, termed general hardness (abbreviated GH) and carbonate hardness (abbreviated KH, from the German “karbon” [carbon]). The combined GH and KH is sometimes termed “total hardness,” but this is of less importance because the GH and KH individually impact the water in different ways.

General Hardness is basically determined by the minerals calcium and magnesium; GH is sometimes referred to as “permanent hardness” because it cannot be removed from water by boiling as can KH. GH is measured in several different units, but in the hobby the most common are parts per million (ppm) and degrees (dH or dGH). One dGH equals 10 milligrams of calcium or magnesium oxide per litre [2], and is equivalent to 17.848 ppm. Multiplying dGH by 17.9 gives ppm, and similarly dividing ppm by 17.9 gives dGH [the same formula works for KH]. The following chart equates the degrees and relative ppm to common terms in the hobby.

0 - 4 dGH 0 - 70 ppm very soft
4 - 8 dGH 70 - 140 ppm soft
8 - 12 dGH 140 - 210 ppm medium hard
12 - 18 dGH 210 - 320 ppm fairly hard
18 - 30 dGH 320 - 530 ppm hard
over 30 dGH over 530 ppm very hard

Fish are directly impacted by GH and TDS; their growth, the transfer of nutrients and waste products through cell membranes, spawning (sperm transfer, egg fertility or hatching), and the proper functioning of internal organs such as the kidneys can all be affected.

Carbonate hardness is the measure of carbonate and bicarbonate ions; carbonates and bicarbonates are the salts of carbonic acid. It is sometimes referred to as Alkalinity [not to be confused with alkaline as in pH, something very different]. Carbonate hardness is also measured most often in either degrees (dKH) or parts per million (ppm), and the same formula to convert dGH to ppm and reverse also works for KH. KH is normally tied to the GH, since carbonate minerals include limestone, dolomite, calcium and calcite. Mollusc shells and coral are primarily calcium. Carbonate hardness is sometimes called “temporary hardness” because it can be removed from water by boiling which precipitates out the carbonates.

KH has no direct impact on fish; but it does “buffer” the pH by binding to additions of acids or bases, keeping the pH stable—or more correctly, preventing it from changing—and the higher the KH, the greater the buffering capacity. A simple way is to think of the buffer as a sponge that soaks up the acid being added; however, at some point it will become saturated, and further additions of the acid can then cause a sudden and very large fluctuation which is usually fatal to the fish. This buffering is why attempts to adjust (lower) the pH of hard water are dangerous and will fail unless the KH is first reduced.

pH stands for pondus hydrogeni, Latin for “potential of hydrogen.” Water is made up of positively-charged hydrogen ions and negatively-charged hydroxyl ions, and pH is the measurement of the ratio of hydrogen and hydroxyl ions in a body of water. Acidic water contains more hydrogen ions, and basic (alkaline) water more hydroxyl ions; neutral water has an equal proportion. The pH is closely linked with the level of carbon dioxide (CO2) because CO2 produces carbonic acid. The hardness also impacts pH, since the carbonates bind to acids as they appear; as mentioned previously, this buffering will prevent or limit changes in pH.

The pH is measured with a scale from 1 to 14 with 7 being neutral. Numbers below 7 indicate acidic water, increasingly more acidic as they lower, while numbers above 7 indicate basic or alkaline water, increasingly as the numbers rise. This scale is logarithmic, meaning that each unit is a ten-fold increase/decrease; so a pH of 5 is ten times more acidic than a pH of 6, and 100 times more acidic than a pH of 7, and a thousand times more acidic than a pH of 8. Fish must never be exposed to sudden pH changes approaching one unit, as this is very stressful and may kill some species.

The impact of pH on fish is significant; water constantly enters the fish via osmosis through the cells, and the pH of the water can shift the pH of the fish’s blood if they are different. The fish must therefore regulate its internal pH accordingly, and this takes energy. Fish do this regularly in nature in response to changes in its environment, but these are usually minimal. Some fish species have a wider range of tolerance than others, for reasons that are not certain.[3] Fish that are wild caught show intolerance for hardness and pH levels that are not close to their origins. Maintaining a species in water that is reasonably close to its natural habitat is usually advisable.

Adjusting water hardness and/or pH should only be done by natural means, never with chemicals and preparations because these will often be “blocked” by the initial KH and may have or lead to other effects that can be highly detrimental to fish and bacteria. Water should always be prepared outside the aquarium and then used to gradually replace the aquarium water over a period of time to avoid shock to the fish.

Hard water can be made softer by diluting it; Reverse Osmosis (RO) water, distilled water, and rainwater can be used. Water will soften in proportion to the dilution; mixing hard tap water half and half with one of the afore-mentioned waters will result in water that is half the original hardness. A caution on home water softeners: many of these work by replacing the calcium [Ca] and magnesium [Mg] ions with sodium (=common salt) [Na] ions. Each Ca and Mg ion is exchanged for two Na ions. Therefore, the end result is water containing twice the ions--or double the total dissolved solids--it previously had, and for soft water fish this is an even worse situation, plus there is the detrimental impact of the sodium (salt).


Soft water can be made harder by using calcareous substances in the filter (preferably) or the substrate. Dolomite is the best, since it is composed of both calcium and magnesium. Crushed coral, marble and limestone also work but need to be in crushed form (grzavel, sand) to have more of an effect. If these latter are used, magnesium can be added with Magnesium Sulphate [pure Epsom Salt] at each water change; very little is needed. The amount required can vary depending upon the softness of the original water, but in general, very little calcareous material is required.

Adjusting pH should not be attempted except in conjunction with altering the GH and KH, since these are closely related. Most municipal water supplies will be medium hard to hard with a correspondingly higher pH in the basic range (7-9). It would not normally be necessary to raise this further, but if the tap water range is medium hard with a pH in the 7’s, adding a calcium or magnesium base to increase both the GH and KH will naturally result in a higher pH, as one might do for rift lake cichlids.

The GH and KH will remain steady once adjusted, provided no substances to increase it are present in the aquarium. Once the KH is low, the pH will naturally lower due to the carbonic acid being added to the water from natural biological processes such as fish and plant respiration, bacteria through the breakdown of organics such as fish waste, uneaten food, plant matter, etc. Regular partial water changes using either similarly-prepared water or even tap water [in smaller amounts] should not overly impact the hardness and pH if the tank is biologically stable.

A final comment on using baking soda (sodium bicarbonate) to raise pH. This can be useful in an emergency, but should not be used long-term. Sodium bicarbonate has no effective buffer action and cannot stabilize pH when additional acids are being produced such as by waste products. Further, the sodium ions will eventually reach levels that are intolerable for soft water fish (Weitzman et al. 1996). Commercial preparations such as rift lake mineral salts and others are effective though they are very expensive long term or in larger aquaria.

Footnotes:

[1] Sands (1995), p. 9.
[2] Baensch & Riehl (1987), p. 29.
[3] Muha (2006), p. 68

References:

Baensch, Hans A. and Rudiger Riehl (1987), Aquarium Atlas, Volume 1, First English Edition.

Ghadially, Feroze N. (1969), Advanced Aquarist Guide, The Pet Library Ltd.

Hiscock, Peter (2003), Encyclopedia of Aquarium Plants, Interpet Publishing, First Edition for the United States and Canada by Barron’s Educational Series, Inc.

Hiscock, Peter (2003), Aquarium Designs Inspired By Nature, Interpet Publishing, First Edition for the United States and Canada by Barron’s Educational Series, Inc.


Muha, Laura (2006), “The Skeptical Fishkeeper,” Tropical Fish Hobbyist, April 2006, pp. 66-69.

Sands, David D. (1995), “Four New Corydoras (Callichthyidae) species from Upper ***** River tributaries and a range extension, together with a discussion of C. bicolor Nijssen & Isbrucker,” Freshwater and Marine Aquarium, Volume 18, Number 7 (July 1995), pp. 8-18.

Weitzman, Stanley H., Lisa Palmer, Naercio A. Menezes and John R. Burns ((1996), "Maintaining Environmental Conditions Suitable for Tropical and Subtropical Forest-adapted Fishes, Especially the Species of Mimagoniates," Tropical Fish Hobbyist, Volume 44, No. 11, June 1996 (Part One), pp. 184-194 and July 1996 (Part Two), pp. 196-201.
 
See less See more
#6 ·
My test strips show my GH as 80ppm or so, which I divided by 17.9 top get a GH of 4.5, rounded.
My kH is 60-80 and I believe you had a thread about that somewhere but I can't find it at the moment...
 
#9 ·
Kh: Gh; Water hardness

Am I to understand I can manage my ph with rainwater instead of RO unit?{Or distilled water}? I am attempting this project right now. I would like to improve my tetra's lot by softening their water. And get some soft water cichlids. Is this safe and healthy for fish? CJD
 
#10 ·
Am I to understand I can manage my ph with rainwater instead of RO unit?{Or distilled water}? I am attempting this project right now. I would like to improve my tetra's lot by softening their water. And get some soft water cichlids. Is this safe and healthy for fish? CJD
Yes to all questions. I've never had to do this myself, having near-zero GH out of the tap, but if you collect it properly and there is no major industrial pollution, it works fine. It is after all exactly what is in natural streams.
 
#11 ·
Byron, I've come across a confusing situation. Why would tap water with a pH of 7.4 rise to around 9 after aging in a bucket of water within 24 hours? Could a city add buffer that keeps it rising?
Posted via Mobile Device
 
#12 ·
Byron, I've come across a confusing situation. Why would tap water with a pH of 7.4 rise to around 9 after aging in a bucket of water within 24 hours? Could a city add buffer that keeps it rising?
Posted via Mobile Device
In this situation, it is due to the out-gassing of CO2. Tap water has CO2 dissolved in it, in varying amounts depending where you are and how they treat the water and how far it travels. CO2 lowers pH by creating carbonic acid, just as happens if you diffuse CO2 into a planted tank. By letting the tap water stand 24 hours, the CO2 will dissipate out, and the pH will naturally rise accordingly, to its actual level. You can also shake it vbery briskly in a jar to out-gas the CO2. And you should always do either before testing pH, in order to get a more accurate reading--as you've seen, it changes.

A change from 7.4 to 9 is quite a bit, and I've no idea if this is solely due to the above of some other additive. Contacting your water folks on this may be advisable, it is good to know just what is in the water.
 
#13 ·
Byron could you help me... I have some calcium build up on the back on my tank could you tell me how to get rid of it?
 
#14 ·
Use vinegar (but not in the tank's water if this is inside) on a sponge or maybe paper towel; if it is really caked on, a scraper might be needed. A razor blade can work but it may scratch the glass. Rinse well with plan water afterwards.
 
  • Like
Reactions: Bacon Is Good
#17 ·
Your explanation is the first of these parameters that is lucid enough, without being condescending, for those of us (especially me) who are semi-literate in chemistry to understand. 1 year of college chemistry about 55 years ago.

Thank you many times over!!
 
#18 · (Edited)
Thanks Byron

I see that it has been a while since someone posted to it so I am pushing it up again, hoping to make it easier for others to find. .

I never had to worry about my GH before with my 55 gallon tank, never had hard water. Now since I moved to Florida an started a much larger tank, I found that my water hardness is 233ppm, and my KH is 161ppm. Been doing a lot of searching for the easiest and best way to lower my GH .

I found a place, Air Water and Ice, that sells a fairly inexpensive 50 gpd RO system with no extra bells or do-dads attached. I got a 55 gallon storage tank that I can batch my RO water and have ready to use when I need to do my water changes.

Again thank you for your post. :)
 
This is an older thread, you may not receive a response, and could be reviving an old thread. Please consider creating a new thread.
Top